Quorum-quenching acylase reduces the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model.

نویسندگان

  • Evelina Papaioannou
  • Mariana Wahjudi
  • Pol Nadal-Jimenez
  • Gudrun Koch
  • Rita Setroikromo
  • Wim J Quax
چکیده

The Pseudomonas aeruginosa PAO1 gene pvdQ encodes an acyl-homoserine lactone (AHL) acylase capable of degrading N-(3-oxododecanoyl)-L-homoserine lactone by cleaving the AHL amide. PvdQ has been proven to function as a quorum quencher in vitro in a number of phenotypic assays. To address the question of whether PvdQ also shows quorum-quenching properties in vivo, an infection model based on the nematode Caenorhabditis elegans was explored. In a fast-acting paralysis assay, strain PAO1(pMEpvdQ), which overproduces PvdQ, was shown to be less virulent than the wild-type strain. More than 75% of the nematodes exposed to PAO1(pMEpvdQ) survived and continued to grow when using this strain as a food source. Interestingly, in a slow-killing assay monitoring the survival of the nematodes throughout a 4-day course, strain PAO1-Delta pvdQ was shown to be more virulent than the wild-type strain, confirming the role of PvdQ as a virulence-reducing agent. It was observed that larval stage 1 (L1) to L3-stage larvae benefit much more from protection by PvdQ than L4 worms. Finally, purified PvdQ protein was added to C. elegans worms infected with wild-type PAO1, and this resulted in reduced pathogenicity and increased the life span of the nematodes. From our observations we can conclude that PvdQ might be a strong candidate for antibacterial therapy against Pseudomonas infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1.

The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine lactone (HSL) nucleus of AHL-dependent qu...

متن کامل

Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1.

In this study, we investigated the biotherapeutic potential of previously isolated quorum quenching (QQ) bacteria. Some of them produce and secrete small compounds that inhibit quorum sensing (QS), others quench QS by enzymatic degradation of N-acylhomoserine lactones (AHLs). The supernatant of cultures of these isolates was tested for inhibitory properties against P. aeruginosa PAO1 biofilms. ...

متن کامل

A Novel Metagenomic Short-Chain Dehydrogenase/Reductase Attenuates Pseudomonas aeruginosa Biofilm Formation and Virulence on Caenorhabditis elegans

In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by...

متن کامل

Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions.

PvdQ, an acylase from Pseudomonas aeruginosa PAO1, has been shown to have at least two functions. It can act as a quorum quencher due to its ability to degrade long-chain N-acylhomoserine lactones (AHLs), e.g. 3-oxo-C12-HSL, leading to a decrease in virulence factors. In addition, PvdQ is involved in iron homeostasis by playing a role in the biosynthesis of pyoverdine, the major siderophore of ...

متن کامل

Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death.

The opportunistic pathogen Pseudomonas aeruginosa causes serious human infections, but effective treatments and the mechanisms mediating pathogenesis remain elusive. Caenorhabditis elegans shares innate immune pathways with humans, making it invaluable to investigate infection. To determine how P. aeruginosa disrupts host biology, we studied how P. aeruginosa kills C. elegans in a liquid-based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 53 11  شماره 

صفحات  -

تاریخ انتشار 2009